UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/16

11 G 18bis A 01 Durée: 4 heures

Séries : S1-S3 - Coeff. 8

OFFICE DU BACCALAUREAT BP 5005-DAKAR-Fann-Sénégal

Serveur Vocal: 628 05 59

Téléfax (221) 864 67 39 - Tél. : 824 95 92 - 824 65 81

Epreuve du 1^{er} groupe

MATHEMATIQUES

Les calculatrices électroniques non imprimantes avec entrée unique par clavier sont autorisées. Les calculatrices permettant d'afficher des formulaires ou des tracés de courbe sont interdites. Leur utilisation sera considérée comme une fraude. (CF. Circulaire n⁰ 5990/OB/DIR. du 12 08 1998)

Première partie 1. Enoncés

1. Exercices

1.1.

EXERCICE 1. (4 pts)

On considère la suite (u_n) d'entiers naturels définie par :

$$u_0 = 27$$

$$\forall n \in \mathbb{N}, u_{n+1} = 3u_n - 4$$

1. Calculer u_1 , u_2 , u_3 et u_4 .

Quelle conjecture peut-on émettre concernant les deux derniers chiffres de u_n ?

 $2 \times 0.25 \text{ pts}$

2. Montrer que pour tout entier naturel n, $u_{n+2} \equiv u_n$ [8]. En déduire que pour tout entier naturel n, $u_{2n} \equiv 3$ [8] et $u_{2n+1} \equiv 5$ [8].

0,25+0,5+0,5 pts

3. Pour tout entier naturel n on pose : $v_n = u_n - 2$.

Montrer que la suite (v_n) est une suite géométrique dont on déterminera le premier terme et la raison.

En déduire que pour tout entier naturel n, $2u_n = 50 \times 3^n + 4$.

 $2 \times 0,25 \text{ pt}$

4. Montrer que pour tout entier naturel n, $2u_n \equiv 54$ [100].

Déterminer les deux derniers chiffres de l'écriture décimale de u_n suivant les valeurs de n.

0.25 + 0.75 pt

5. Montrer que deux termes consécutifs de la suite (u_n) sont premiers entre eux.

0,75 pt

1.2.

EXERCICE 2. (4 pts)

L'espace orienté \mathcal{E} est rapporté à un repère₁ orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

Correction proposee par la commission d'examen

Soit f l'application de \mathcal{E} dans \mathcal{E} qui à tout point M de coordonnées (x, y, z) associe le point M' de coordonnées (x', y', z') tel que

$$\begin{cases} x' = y \\ y' = z+1 \\ z' = x-1 \end{cases}$$

1. a) Montrer que f est une isométrie. (c'est à dire que f conserve la distance.)

0,5 pt

b) Montrer que l'ensemble des points invariants par f est la droite (Δ) passant par le point A de coordonnées (0,0,-1) et de vecteur directeur $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$

0,5 pt

- **2.** Soit P le plan perpendiculaire à (Δ) en A.
- a) Montrer que le point I de coordonnées (-1,0,0) appartient à P. 0,5 pt
- b) Prouver que I' = f(I) appartient à P.
- 3. Déterminer la nature de f et ses éléments géométriques caractéristiques. 0,5 pt
- 4. Déterminer l'ensemble des points M de \mathcal{E} d'images M' tels que le milieu J de [MM'] appartient :
 - a) au plan Q d'équation cartésienne : 2x + y z = 0; 0,75 pt
 - b) à la droite (D) dont un système d'équations cartésiennes est : x = y = z. 0,75 pt

2.

PROBLEME. (12 pts)

2.1.

Partie A

Soit f une fonction numérique définie sur l'intervalle I = [-1, 1] et admettant sur I une dérivée troisième f " continue. Soit a un point de I, $a \neq 0$.

1. a) Dire pourquoi f''' est bornée (c'est à dire il existe deux réels m et M tels que pour tout $x \in I$, $m \le f'''(x) \le M$ ou il existe un réel K > 0 tel que pour tout $x \in I$, $|f'''(x)| \le K$.)

En déduire $\lim_{a \to 0} \frac{1}{a^2} \int_0^a (a-x)^2 f'''(x) dx$.

b) Soit g une fonction numérique définie sur I et admettant sur I une dérivée troisième g " continue.

Quelle est la dérivée de f''g' - f'g''?

En déduire que

(2.1)
$$\int_0^a f'(x)g'''(x) \ dx = \left[(f'g'' - f''g')(x) \right]_0^a + \int_0^a f'''(x)g'(x) \ dx.$$

0,25+0,5 pt

- **2.** On prend $g(x) = \frac{1}{6}(a-x)^3$.
- a) Après avoir calculé g'(x), g''(x) et g'''(x) pour $x \in I$, montrer en utilisant la relation (2.1) que

$$f(a) = f(0) + f'(0)a + \frac{1}{2}f''(0)a^2 + \frac{1}{2}\int_0^a (a-x)^2 f'''(x) dx.$$

Epreuve du 1^{er} groupe

3/16

Correction proposée par la commission d'examen

b) Application

En choisissant pour f la fonction $x \mapsto e^x$, calculer $\lim_{a \mapsto 0} \frac{e^a - a - 1}{a^2}$.

3. Dans le plan \mathcal{P} muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ on considère la courbe \mathcal{G} de système d'équations paramétriques :

$$\begin{cases} x(t) = \frac{t}{e^t - 1} \\ y(t) = \frac{t}{e^t - 1} e^t \end{cases} \text{ si } t > 0 \text{ et } x(0) = y(0) = 1.$$

a) Montrer que les fonctions x et y sont continues au point 0. 0,25+0,25 pt

b) Vérifier qu'elles sont dérivables en 0. Quelle est la tangente T_B à \mathcal{G} au point B de coordonnées (1, 1)?

2.2.

Partie B

Pour tout entier naturel non nul n on considère la fonction numérique f_n définie sur $[0 + \infty[$ par : $f_n(x) = e^{\sqrt{x}} - (e + \frac{1}{n})\sqrt{x}$. C_n est sa courbe représentative dans le plan \mathcal{P} muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ (unité graphique 2 cm).

1. a) Justifier la dérivabilité de f_n sur $]0, +\infty[$ et calculer $f'_n(x)$ pour x > 0. La fonction f_n est-elle dérivable au point 0? (On pourra utiliser 2.b de la partie A)

 $3 \times 0,25 \text{ pt}$

b) Calculer $\lim_{x \to +\infty} f_n(x)$ puis $\lim_{x \to +\infty} \frac{f_n(x)}{x}$ et dresser le tableau de variations de f_n .

 $3 imes0,\!25~\mathrm{pt}$

c) Construire dans le repère, la courbe C_1 , sa demi-tangente au point d'abscisse 0 et sa tangente au point d'abscisse $\left[\ln(e+1)\right]^2$.

 $3 \times 0.25 \text{ pt}$

2. a) Montrer que l'équation $f_n(x) = 0$ admet deux solutions α_n et β_n telles que

$$0 < \alpha_n < 1 < \beta_n.$$

 $2 \times 0.25 \text{ pt}$

b) Soit b un réel positif ou nul. Montrer que $\int_0^b e^{\sqrt{x}} dx = 2 + 2(\sqrt{b} - 1)e^{\sqrt{b}}$. Pour cela, on pourra utiliser la formule d'intégration par parties :

$$\int_{a}^{b} u(x)v'(x) \ dx = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \ dx$$

en prenant $u(x) = \sqrt{x}$.

 $_{0,5}$ pt

c) Pour tout entier naturel n on pose : $I_n = \int_0^{\alpha_n} f_n(x) \ dx$.

Vérifier que $I_n = 2 + 2\left(e + \frac{1}{n}\right)\sqrt{\alpha_n}\left(\sqrt{\alpha_n} - \frac{1}{3}\alpha_n - 1\right)$.

3. Pour tout $x \in \mathbb{R}_+^*$, on pose : $\varphi(x) = \frac{e^x}{x}$.

a) Démontrer que les restrictions h_1 et h_2 de φ respectivement à chacun des intervalles $V_1 =]0, 1]$ et $V_2 = [1, +\infty[$ sont des bijections de V_1 et V_2 respectivement sur des intervalles à déterminer.

Epreuve du 1^{er} groupe

Correction proposée par la commission d'examen

0,5 pt

On pose $h = h_2^{-1} \circ h_1$ et on désigne par C_h la courbe de h dans le repère.

On ne cherchera pas l'expression de h(x) en fonction x.

- b) Vérifier que pour tout entier $n \ge 1$, $e + \frac{1}{n} = h_1(\sqrt{\alpha_n})$; en déduire que la suite $(\alpha_n)_{n \ge 1}$ est convergente et calculer sa limite. En déduire $\lim_{n \to +\infty} I_n$. 3 × 0,25 pt
 - c) Déterminer de même la limite de la suite $(\beta_n)_{n\geq 1}$.
- **4.** Pour tout entier naturel non nul n, on note M_n le point du plan de coordonnées $(\sqrt{\alpha_n}, \sqrt{\beta_n})$.
- a) Montrer que pour tout entier naturel non nul n, le point M_n appartient à C_h (c'est à dire $h(\sqrt{\alpha_n}) = \sqrt{\beta_n}$).

0,25 pt

0,25 pt

b) Déterminer les limites de h aux bornes de son ensemble de définition.

Montrer que la fonction h est décroissante.

 $2 \times 0.25 \text{ pt}$

c) Démontrer que h est dérivable dans]0,1[.

0,25 pt

En remarquant que

(2.2)
$$\varphi(x) = \varphi(h(x)),$$

pour tout x appartenant à V_1 , établir que $\forall x \in]0,1[,\ h'(x)=\frac{x-1}{x}\times\frac{h(x)}{h(x)-1}.$

0,25 pt

5. a) Soit M(x,y) un point de C_h . On pose $t = \ln\left(\frac{y}{x}\right)$.

En utilisant la relation (2.2), montrer que :

$$\begin{cases} \frac{y}{x} &= e^t \\ y - x &= t \end{cases}$$

En déduire que M est le point de \mathcal{G} de paramètre t.

0.5 + 0.25 pt

b) Réciproquement, vérifier que tout point de \mathcal{G} appartient à C_h .

0,5 pt

c) Donner une équation de T_A , tangente à C_h au point A d'abscisse 0,4 (On prendra 2 comme valeur approchée de h(0,4)).

Représenter la courbe C_h ainsi que les tangentes T_A et T_B .

0,25 + 0,5 pt

Deuxième partie 2. Correction proposée par la commission d'examen

3. Exercices

3.1.

EXERCICE 3.

1. $u_0 = 27$, $u_1 = 77$, $u_2 = 227$, $u_4 = 677$

Conjecturons que les deux derniers chiffres de u_n sont 27 ou 77

2. Puisque le premier terme u_0 est un entier, on montre facilement par récurrence que pour tout $n \in \mathbb{N}^*$, u_n est bien un entier comme l'affirme l'énoncé.

Correction proposée par la commission d'examen

5/16

On a pour tout $n \in \mathbb{N}^*$:

$$u_{n+2} = 3 u_{n+1} - 4$$

= 3(3 u_n - 4) - 4
= 9 u_n - 16

donc

$$\begin{array}{rcl} u_{n+2} - u_n & = & 8 \ u_n - 16 \\ & = & 8(\ u_n - 2) \end{array}.$$

Ainsi $u_{n+2} - u_n$ est un multiple de 8; ce qui se traduit par :

$$u_{n+2} \equiv u_n$$
 [8].

En prenant pour n un entier pair $2p, p \in \mathbb{N}$ cette relation se traduit par :

$$u_{2(p+1)} \equiv u_{2p} [8]$$

c'est à dire en posant pour tout $p \in \mathbb{N}^*$: $u_{2p} = a_p$:

$$a_{p+1} \equiv a_p \ [8].$$

Deux termes consécutifs de la suite (a_p) sont donc congrus modulo 8; donc tous les termes sont congrus au premier terme $a_0 = u_0 = 27$ qui lui-même est congru à 3. Conclusion $u_{2n} \equiv 3$ [8]

(On peut aussi utiliser la relation précédente pour faire une récurrence : Le premier terme $a_0 = u_0 = 27$ est congru à 3. Supposons que a_k soit congru à 3 pour tout k appartenant à $\{0, \ldots, n\}$ et montrons que a_{n+1} est congru à 3....).

En prenant pour n un entier impair $2p+1, p \in \mathbb{N}$ cette relation se traduit par :

$$u_{2(p+1)+1} \equiv u_{2p+1}$$
 [8]

c'est à dire en posant pour tout $p \in \mathbb{N}^*$: $u_{2p+1} = b_p$:

$$b_{p+1} \equiv b_p \ [8]$$

Deux termes consécutifs de la suite (b_p) sont donc congrus modulo 8; donc tous les termes sont congrus au premier terme $b_0 = u_1 = 77$ qui lui-même est congru à 5. Conclusion $u_{2n+1} \equiv 5$ [8].

(On peut aussi utiliser la relation précédente pour faire une récurrence : Le premier terme $b_0 = u_1 = 77$ est congru à 5. Supposons que b_k soit congru à 5 pour tout k appartenant à $\{0, \ldots, n\}$ et montrons que b_{n+1} est congru à 5....).

3. On a pour tout $n \in \mathbb{N}^*$:

$$v_{n+1} = u_{n+1} - 2$$

= $3u_n - 6$
= $3(u_n - 2)$
= $3v_n$.

La suite (v_n) est donc géométrique de raison 3 et de premier terme $v_0 = u_0 - 2 = 25$. Par conséquent, pour tout $n \in \mathbb{N}^*$: $v_n = 3^n v_0$ c'est à dire $u_n = 2 + 25 \times 3^n$ ou $2u_n = 4 + 50 \times 3^n$

4. De cette relation on déduit $2u_n - 54 = 50(3^n - 1)$, ce qui entraîne : $2u_n - 54 \equiv [50]$ De plus $(3^n - 1)$ est pair parce que 3^n est impair; donc $2u_n - 54$ est un multiple de $2 \times 50 = 100$ c'est à dire $2u_n - 54 \equiv [100]$. Correction proposée par la commission d'examen

Cette dernière relation se traduit par : il existe un entier q tel que $2u_n = 54 + 100p$ soit, $u_n = 27 + 50p$. Le nombre 50p se terminant par 50 ou 00, le nombre u_n se termine par 27 + 50 = 77 ou 27 + 00 = 27

5. Remarquons d'abord que u_n est impair parce que son écriture décimale se termine par 7; donc tous ses diviseurs sont impairs.

Soit d un diviseur commun positif de u_{n+1} et u_n . Il existe deux entiers p et q (dépendant de n) tels que $u_{n+1} = pd$ et $u_n = qd$.

La relation $u_{n+1} = 3u_n - 4$ qui définit la suite (u_n) devient d(3q - p) = 4. Ainsi d, qui est un nombre impair, divise 4 c'est à dire d=1 et u_{n+1} et u_n sont bien premiers entre eux.

On peut aussi dire : Si a et b sont deux entiers tels qu'il existe deux entiers q et r avec a=bq+r alors $a \wedge b=b \wedge r$ et l'écriture $u_{n+1}=3u_n-4$ montre que $u_{n+1} \wedge u_n=u_n \wedge 4=1$ la dernière égalité provenant de ce que les seuls diviseurs positifs de 4 sont 1,2 et 4 et u_n est impair.

3.2.

EXERCICE 4.

1. a) Pour montrer que f est une isométrie, il suffit de vérifier qu'elle conserve la distance. Soient $M(x_M, y_M, z_M)$ et $N(x_N, y_N, z_N)$ deux points quelconques de \mathcal{E} et $M'(x_{M'}, y_{M'}, z_{M'})$, $N'(x_{N'}, y_{N'}, z_{N'})$ leurs images respectives par f c'est à dire

$$\begin{cases} x_{M'} = y_M \\ y_{M'} = z_M + 1 \\ z_{M'} = x_M - 1 \end{cases} \text{ et } \begin{cases} x_{N'} = y_N \\ y_{N'} = z_N + 1 \\ z_{N'} = x_N - 1 \end{cases}$$

Alors
$$M'N'^{2} = (x_{N'} - x_{M'})^{2} + (y_{N'} - y_{M'})^{2} + (y_{N'} - y_{M'})^{2}$$

$$= (y_{N} - y_{M})^{2} + (z_{N} - z_{M})^{2} + (x_{N} - x_{M})^{2}$$

$$= MN^{2}$$

Un point M(x, y, z) de \mathcal{E} est invariant si et seulement si f(M) = M c'est à dire

$$\begin{cases} x = y \\ y = z+1 \\ z = x-1 \end{cases}$$

Ce système est donc équivalent à x = y = z + 1

On reconnaît là un système d'équations d'une droite.

L'ensemble des points invariants par f est la droite d'équations : x = y = z + 1

Le point A appartient manifestement à cette droite puisque $x_A = y_A = z_A + 1$

Le point B(1,1,0) appartient aussi à cette droite puisque $x_B = y_B = z_B + 1$.

Le vecteur $\overrightarrow{u} = AB(1,1,1)$ est donc un vecteur directeur de cette droite

L'ensemble des points invariants par f est bien la droite Δ .

On peut aussi trouver un vecteur directeur de Δ en partant d'une représentation paramétrique de Δ .

Prenons z comme paramètre. La relation x = y = z + 1 est équivalente à

$$\begin{cases} x = t+1 \\ y = t+1 \\ z = t \end{cases} ; \quad t \in \mathbb{R}$$

Le vecteur $\overrightarrow{u}(1,1,1)$ est donc un vecteur directeur de cette droite

2. Etant donné que le point A appartient à P,

Correction proposée par la commission d'examen

pour prouver que le point I appartient à P, il suffit d'établir que \overrightarrow{AI} est orthogonal à \overrightarrow{u} c'est à dire \overrightarrow{AI} . $\overrightarrow{u}=0$.

 \overrightarrow{AI} ayant pour coordonnées (-1,0,1) on a bien : $\overrightarrow{AI}.\overrightarrow{u} = -1.1 + 0.0 + 1.1 = 0$

a)
$$I' = f(I)$$
 a pour coordonnées
$$\begin{cases} x_{I'} = y_I = 0 \\ y_{I'} = z_I + 1 = 1 \\ z_{I'} = x_I - 1 = -2 \end{cases}$$

Etant donné que le point A appartient à P,

pour prouver que le point I' appartient à P, il suffit d'établir que $\overrightarrow{AI'}$ est orthogonal à \overrightarrow{u} c'est à dire $\overrightarrow{AI'}$. $\overrightarrow{u} = 0$.

 $\overrightarrow{AI'}$ ayant pour coordonnées (0,1,-2) on a bien : $\overrightarrow{AI'}$. $\overrightarrow{u} = 0.1 + 1.1 - 1.1 = 0$.

On peut aussi donner une équation de P et établir que les coordonnées des points I et I' vérifient cette équation.

Puisque le vecteur \overrightarrow{u} est normal à P, une équation cartésienne de P sera de la forme x+y+z+d=0. Dire que A appartient P signifie alors que 1+d=0 c'est à dire d=1.

3. f étant une isométrie de l'espace dont l'ensemble des points invariants est la droite Δ , elle est une rotation d'axe Δ . Son angle a pour mesure $\theta = (\overrightarrow{AI}, \overrightarrow{AI'})$

Or $\overrightarrow{AI}.\overrightarrow{AI'}=AI.AI'$ $\cos\theta$; \overrightarrow{AI} a pour coordonnées (-1,0,1) et $\overrightarrow{AI'}$ a pour coordonnées (1,0,-1). Donc $-1=\sqrt{2}\sqrt{2}\cos\theta$ c'est à dire $\cos\theta=-\frac{1}{2}$; on peut donc prendre $\theta=\frac{2\pi}{3}$ ou $\theta=-\frac{2\pi}{3}$ (selon l'orientation de Δ)

4. a) Notons Q_1 l'ensemble des points M de \mathcal{E} d'images M' tels que le milieu J de [MM'] appartient au plan Q d'équation 2x + y - z = 0.

Soit M(x, y, z) un point de \mathcal{E} et M'(x', y', z') son image par f c'est à dire $\begin{cases} x' = y \\ y' = z + 1 \\ z' = x - 1 \end{cases}$

Les coordonnées du milieu J de [MM'] sont

$$x_J = \frac{1}{2}(x+x'), \ y_J = \frac{1}{2}(y+y') \text{ et } z_J = \frac{1}{2}(z+z')$$

 $x_J = \frac{1}{2}(x+y), \ y_J = \frac{1}{2}(y+z+1) \text{ et } z_J = \frac{1}{2}(z+x-1)$

Donc $M \in Q_1 \Leftrightarrow J \in Q$ $\Leftrightarrow 2(x+y)+(y+z+1)-(z+x-1)=0$ $\Leftrightarrow x+3y+2=0$

L'ensemble des points M de \mathcal{E} d'images M' tels que le milieu J de [MM'] appartient au plan Q d'équation 2x + y - z = 0 est donc le plan d'équation x + 3y + 2 = 0.

b) Notons D_1 l'ensemble des points M de \mathcal{E} d'images M' tels que le milieu J de [MM'] appartient à la droite (D) d'équations x = y = z.

Soit M(x, y, z) un point de \mathcal{E} et M'(x', y', z') son image par f.

Les coordonnées du milieu J de [MM'] sont $x_J=\frac{1}{2}(x+y),\ y_J=\frac{1}{2}(y+z+1)$ et $z_J=\frac{1}{2}(z+x-1).$

Donc
$$M \in D_1 \Leftrightarrow J \in (D)$$
 $\Leftrightarrow x + y = y + z + 1 = z + x - 1(*)$
 $\Leftrightarrow \begin{cases} x - z - 1 &= 0 \\ -x + y + 2 &= 0 \end{cases}$

L'ensemble des points M de $\mathcal E$ d'images M' tels que le milieu J de [MM'] appartient à la droite (D) d'équations x=y=z est donc le droite d'équations $\left\{ \begin{array}{ll} x-z-1&=&0\\ x-y-2&=&0 \end{array} \right.$

La relation (*) constitue aussi un système d'équations de notre ensemble!

 \mathbf{X}

4. Problème

4.1.

Partie A

1. a) La \dot{f} onction f''' ét \dot{a} nt continue dans l'inte \dot{r} valle fermé \dot{b} orné I, est bornée (et \dot{a} tteint même ses bornes)

Il existe donc un réel K > 0 tel que pour tout $x \in I$, $|f'''(x)| \le K$.

Alors

$$\left| \int_0^a (a-x)^2 f'''(x) \, dx \right| \leq \operatorname{signe}(a) \int_0^a \left| (a-x)^2 f'''(x) \right| \, dx$$

$$\leq M.\operatorname{signe}(a) \int_0^a (a-x)^2 \, dx$$

$$= \frac{1}{3} M.\operatorname{signe}(a) \left[-(a-x)^3 \right]_0^a$$

$$= \frac{1}{3} M.\operatorname{signe}(a) a^3$$

$$= \frac{1}{3} M |a|^3$$

Ensuite $0 \le \left| \frac{1}{a^2} \int_0^a (a-x)^2 f'''(x) dx \right| \le \frac{1}{3} M|a| \xrightarrow{a \mapsto 0} 0$

et (Théorème des gendarmes) : $\lim_{a \to 0} \frac{1}{a^2} \int_0^a (a-x)^2 f'''(x) \ dx = 0$

b) La dérivée de f''g' - f'g'' est

$$\left(f\,''g\,' - f\,'g\,''\right)' = f\,'''g\,'' + f\,''g\,'' - (f\,''g\,'' + f\,'g\,''') = f\,'''g\,' - f\,'g\,'''$$

En intégrant cette relation de 0 à a on obtient :

$$\int_0^a \left(f''g' - f'g'' \right)'(x) \ dx = \int_0^a \left(f'''(x)g'(x) - f'(x)g'''(x) \right) \ dx$$

c'est à dire la relation demandée

Epreuve du 1er groupe

Correction proposée par la commission d'examen

$$\int_0^a f'(x)g'''(x) \ dx = \left[(f'g'' - f''g')(x) \right]_0^a + \int_0^a f'''(x)g'(x) \ dx$$

2. On prend $g(x) = \frac{1}{6}(a-x)^3$.

a)
$$g'(x) = -\frac{1}{2}(a-x)^2$$
, $g''(x) = a-x$ et $g'''(x) = -1$, et la relation précédente devient :

$$-\int_0^a f'(x) \ dx = \left[(f'g'' - f''g')(x) \right]_0^a + \int_0^a f'''(x)g'(x) \ dx$$

En remarquant que g ' et g " s'annulent au point a :

$$-(f(a) - f(0)) = -(f'(0)g''(0) - f''(0)g'(0)) - \frac{1}{2} \int_0^a (a - x)^2 f'''(x) dx$$

Il ne reste plus qu'à remplacer g'(0) et g''(0) par leurs valeurs respectives $-\frac{1}{2}a^2$ et a pour avoir

la relation demandée

$$f(a) = f(0) + f'(0)a + \frac{1}{2}f''(0)a^2 + \frac{1}{2}\int_0^a (a-x)^2 f'''(x) dx$$

b) Appliquons le résultat précédent à la fonction f définie par $f(x) = e^x$.

Tous les nombres dérivés de f en x sont égaux à e^x ; donc tous les nombres dérivés de fen 0 sont égaux à 1.

La relation précédente devient alors :

$$e^{a} = 1 + 1.a + \frac{1}{2} \cdot 1.a^{2} + \frac{1}{2} \int_{0}^{a} (a - x)^{2} e^{x} dx$$

c'est à dire $\frac{e^a - a - 1}{a^2} = \frac{1}{2} + \frac{1}{2a^2} \int_0^a (a - x)^2 e^x dx$ et la question 1 permet de conclure, puisque la fonction $x \mapsto e^x$ est bornée dans [-1, 1]:

$$\lim_{a \to 0} \frac{e^a - a - 1}{a^2} = \frac{1}{2} + \lim_{a \to 0} \frac{1}{2a^2} \int_0^a (a - x)^2 e^x dx = \frac{1}{2}.$$

3. a) $\lim_{t\to 0} x(t) = \lim_{t\to 0} \frac{t}{e^t - 1} = 1 = x(0)$, donc la fonction x est continue au point 0. $\lim_{t\to 0} x(t) = \lim_{t\to 0} x(t)e^t = 1 = y(0)$, donc la fonction \dot{y} est continu \dot{e} au point 0. Regardons le taux d'accroissement τ_1 de x au point 0

$$\forall t \neq 0, \ \tau_1(t) = \frac{x(t) - x(0)}{t}$$

$$= \frac{t - e^t + 1}{t(e^t - 1)}$$

$$= -\frac{e^t - t - 1}{t^2} \frac{t}{e^t - 1}$$

Le premier facteur de ce dernier membre a pour limite $-\frac{1}{2}$ quand t tend vers 0 d'après l'application. Le deuxième facteur a pour limite 1 quand t tend vers 0.

Donc x est dérivable au point 0 et $x'(0) = -\frac{1}{2}$

Regardons le taux d'accroissement τ_2 de y au point 0

$$\forall t \neq 0, \ \tau_2(t) = \frac{y(t) - y(0)}{t}$$

$$= \frac{x(t)e^t - 1}{t}$$

$$= x(t)\frac{e^t - 1}{t} + \frac{x(t) - 1}{t}$$

Puisque x(t) a pour limite 1 quand t tend vers 0, $\tau_2(t)$ a pour limite $1 \times 1 - \frac{1}{2} = \frac{1}{2}$ quand t tend vers 0.

Donc y est dérivable au point 0 et $y'(0) = \frac{1}{2}$

b) La tangente à \mathcal{G} au point A(1, 1) est la droite passant par A et de vecteur directeur le vecteur de coordonnées $\left(-\frac{1}{2}, \frac{1}{2}\right)$

4.2.

Partie B

1. a) Pour simplifier, nous allons poser $u_n = e + \frac{1}{n}$.

La fonction $f_1: x \mapsto e^x$ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f_1'(x) = e^x$; la fonction $f_2: x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}^*_+ et $\forall x \in \mathbb{R}^*_+$, $f_2'(x) = \frac{1}{2\sqrt{x}}$.

Comme f égale $f_1 \circ f_2 - u_n \cdot f_2$, elle est dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_{+}^{*}, \ f'(x) = f_1'(f_2(x))f_2'(x) - u_n f_2'(x) = f_2'(x) \Big(f_1'(f_2(x)) - u_n \Big)$$

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = \frac{1}{2\sqrt{x}} \left(e^{\sqrt{x}} - u_n \right)$$

Pour étudier la dérivabilité de f_n à droite en 0, regardons le taux d'accroissement

$$\tau(x) = \frac{f(x) - f(0)}{x - 0}, \ x > 0$$

$$\tau(x) = \frac{e^{\sqrt{x}} - u_n \sqrt{x} - 1}{x}.$$

Posons $a = \sqrt{x}$. Alors quand x tend vers 0^+ , a aussi tend vers 0^+ et

$$\tau(x) = \frac{e^a - u_n a - 1}{a^2} = \frac{e^a - a - 1}{a^2} + \frac{(1 - u_n)}{a}$$

Dans le dernier membre de cette relation, le premier terme a pour limite $\frac{1}{2}$ d'après la partie

A; le deuxième terme a pour limite $-\infty$. Donc

$$\lim_{x \to 0^+} \tau(x) = -\infty$$

La fonction f_n n'est donc pas dérivable au point 0 et de plus au point de C_{f_n} d'abscisse 0 (c'est le point de coordonnées (0,1)) il y a une demi-tangente verticale.

Remarque 1. Pour étudier la dérivabilité de f_n en 0, on utilise souvent le théorème suivant :

 $Th\'{e}or\`{e}me$ 1. Soit f une fonction définie et continue sur un intervalle I, dérivable sur I sauf peut-être en un point a de I. Alors

- (i) Si f' a une limite ℓ quand x tend vers a, alors f est dérivable en a et $f'(a) = \ell$
- (ii) Si f ' a pour limite $+\infty$ ou $-\infty$ quand x tend vers a, alors f n'est pas dérivable en a et de plus au point de C_f d'abscisse a il y a une tangente verticale.

Dans le cas présent, $\forall x > 0$, $f_n'(x) = \frac{1}{2\sqrt{x}}(e^{\sqrt{x}} - u_n)$ et en posant comme précédemment $a = \sqrt{x}$, on a :

$$\forall x > 0, \ f_n'(x) = \frac{1}{2} \frac{e^a - u_n}{a} = \frac{1}{2} \frac{e^a - 1}{a} + \frac{1}{2} \frac{1 - u_n}{a} \xrightarrow{a \to 0^+} \quad "\frac{1}{2} - \infty" = -\infty$$

b) Au voisinage de $+\infty$, on a un indétermination de la forme " $+\infty - \infty$ ". Pour lever cette indétermination écrivons : $f_n(x) = \sqrt{x} \left(\frac{e^{\sqrt{x}}}{\sqrt{x}} - u_n \right)$, puis en posant toujours $a = \sqrt{x}$,

$$f_n(x) = a\left(\frac{e^a}{a} - u_n\right)$$
. Comme $\lim_{a \to +\infty} \frac{e^a}{a} = +\infty$, il vient $\lim_{a \to +\infty} f_n(x) = +\infty$.

On a aussi
$$\frac{f_n(x)}{x} = \left(\frac{e^a}{a^2} - \frac{u_n}{a}\right)$$
 puis $\lim_{x \to +\infty} \frac{f_n(x)}{x} = +\infty$.

Pour x > 0 on a :

$$f_n'(x) > 0 \Leftrightarrow e^{\sqrt{x}} - u_n > 0 \Leftrightarrow e^{\sqrt{x}} > u_n$$

 $\Leftrightarrow \sqrt{x} > \ln u_n \Leftrightarrow x > (\ln u_n)^2$

Voici le tableau de variations de f_n .

x	0	α_n	1	$(\ln u_n)^2$	eta_n	$+\infty$
$f'_n(x)$		 _ 	 - 		+	
f_n	1	0	$\frac{1}{n}$	$u_n(1 - \ln u_n)$	0	+\infty

c) Et voici la courbe \mathcal{C}_1 et ses tangentes verticale et horizontale.

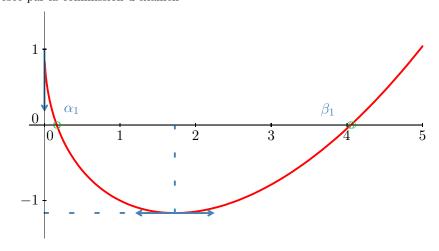


FIGURE 1. Animez la figure!!

Epreuve du 1er groupe

Correction proposée par la commission d'examen

2. a) Puisque u_n est strictement supérieur à e, $\ln u_n$ est strictement supérieur 1; donc $f((\ln u_n)^2) = u_n(1 - \ln u_n)$ est strictement négatif.

Comme f(0) = 1 est strictement positif, d'après le théorème des valeurs intermédiaires, l'équation $f_n(x) = 0$ admet dans $[0, (\ln u_n)^2]$ une solution α_n .

De même, $\lim_{x \to +\infty} f_n(x) = +\infty$ permet d'affirmer d'après ce même théorème que l'équation $f_n(x) = 0$ admet dans $](\ln u_n)^2, +\infty[$ une solution β_n .

Comme f_n est strictement monotone dans chacun des intervalles]0, $(\ln u_n)^2[$ et $](\ln u_n)^2$, $+\infty[$, l'équation $f_n(x) = 0$ a, dans chacun de ces intervalles une solution unique.

 $1<(\ln u_n)^2$ et $f_n(1)=-\frac{1}{n}<0=f_n(\alpha_n)$ entraı̂ne $\alpha_n<1$ car f_n est strictement décroissante dans $[1,(\ln u_n)^2]$

Ainsi on a bien $\alpha_n < 1 < (\ln u_n)^2 < \beta_n$

b)

Pour que la formule d'intégration par parties puisse être appliquée, v doit être tel que $uv' = e^{\sqrt{x}}$, ce qui nécessite $v' = \frac{e^{\sqrt{x}}}{\sqrt{x}}$ ou $v' = 2\left(e^{\sqrt{x}}\right)'$.

On peut donc prendre $v = 2e^{\sqrt{x}}$. La formule donne alors

$$\int_0^b e^{\sqrt{x} t} dx = \left[uv \right]_0^b - \int_0^b \frac{1}{2\sqrt{x}} 2e^{\sqrt{x}} dx$$
$$= \left[uv \right]_0^b - \int_0^b v' dx$$
$$= \left[uv - v \right]_0^b$$

Finalement $\int_0^b e^{\sqrt{x}} dx = 2 + 2e^{\sqrt{b}}(\sqrt{b} - 1)$

c) On a
$$\int_0^b \sqrt{x} \, dx = \int_0^b x^{1/2} \, dx = \left[\frac{2}{3}x^{3/2}\right]_0^b = \left[\frac{2}{3}x\sqrt{x}\right]_0^b = \frac{2}{3}b\sqrt{b}$$

Par conséquent $\int_0^b f(x) dx = 2 + 2e^{\sqrt{b}}(\sqrt{b} - 1) - \frac{2}{3}u_n b\sqrt{b}$

La relation $f_n(\alpha_n) = 0$ se traduit par $e^{\sqrt{\alpha_n}} - u_n \sqrt{\alpha_n} = 0$ c'est à dire $e^{\sqrt{\alpha_n}} = u_n \sqrt{\alpha_n}$. Donc

$$I_n = 2 + 2e^{\sqrt{\alpha_n}}(\sqrt{\alpha_n} - 1) - \frac{2}{3}u_n\alpha_n\sqrt{\alpha_n}$$
$$= 2 + 2u_n\sqrt{\alpha_n}(\sqrt{\alpha_n} - 1) - \frac{2}{3}u_n\alpha_n\sqrt{\alpha_n}$$

$$I_n = 2 + 2u_n\sqrt{\alpha_n}\left(\sqrt{\alpha_n} - \frac{1}{3}\alpha_n - 1\right)$$

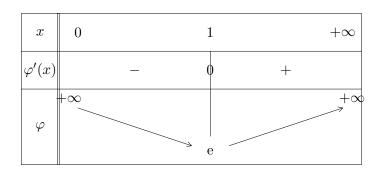
- **3.** Pour tout $x \in \mathbb{R}_+^*$, on pose $\varphi(x) = \frac{e^x}{x}$.
- a) La fonction φ est continue et dérivable dans \mathbb{R}_+^* , et

$$\forall x \in \mathbb{R}_+^*, \ \varphi'(x) = \frac{x-1}{x^2} e^x$$

Le signe de $\varphi'(x)$ est donc celui de x-1. Voici le tableau de variations de φ .

Epreuve du 1^{er} groupe

Correction proposée par la commission d'examen



La fonction φ est continue et strictement décroissante dans V_1 . Sa restriction à V_1 est donc une bijection h_1 de V_1 dans $\varphi(V_1) = W = [e, +\infty[$.

La fonction φ est continue et strictement croissante dans V_2 . Sa restriction à V_2 est donc une bijection h_2 de V_2 dans $\varphi(V_2) = W$

b) La relation $f_n(\alpha_n) = 0$ se traduit par $e^{\sqrt{\alpha_n}} - u_n \sqrt{\alpha_n} = 0$ c'est à dire $\frac{e^{\sqrt{\alpha_n}}}{\sqrt{\alpha_n}} = u_n$ ou, puisque α_n appartient à V_1 , $u_n = h_1(\alpha_n)$.

On en déduit, puisque h_1 est une bijection : $\alpha_n = h_1^{-1}(u_n)$.

La fonction h_1 étant continue et la suite (u_n) convergente de limite e,

la suite (α_n) est convergente et de limite $h_1^{-1}(e) = 1$

Sachant que la suite (α_n) est convergente, la relation $I_n = 2 + 2u_n\sqrt{\alpha_n}\left(\sqrt{\alpha_n} - \frac{1}{3}\alpha_n - 1\right)$ montre que

la suite (I_n) est aussi convergente et de limite $2 + 2e \cdot 1(1 - \frac{1}{3} - 1) = 2 - \frac{2}{3}e$

c) Le même raisonnement montre que la suite (β_n) est convergente et de limite $h_2^{-1}(e) = 1$

4. a) Les relations
$$\frac{e^{\sqrt{\alpha_n}}}{\sqrt{\alpha_n}} = \frac{e^{\sqrt{\beta_n}}}{\sqrt{\beta_n}} = u_n$$
 montrent que

 $\varphi(\sqrt{\alpha_n}) = \varphi(\sqrt{\beta_n})$ c'est à dire, puisque $\sqrt{\alpha_n} \in V_1$ et $\sqrt{\beta_n} \in V_2$, $h_1(\sqrt{\alpha_n}) = h_2(\sqrt{\beta_n})$ ou, $\sqrt{\beta_n} = h_2^{-1} \circ h_1(\sqrt{\alpha_n}) = h(\sqrt{\alpha_n})$. le point M_n appartient bien au graphe de h.

b)

Soit x un réel

Soit
$$x$$
 un reel $x \in D_h$ \Leftrightarrow
$$\begin{cases} x \in D_{h_1} \\ h_1(x) \in D_{h_2^{-1}} \end{cases} \Leftrightarrow \begin{cases} x \in V_1 \\ h_1(x) \in V_2 \end{cases} \Leftrightarrow x \in V_1$$

Lorsque x tend vers $0, h_1(x) = \varphi(x)$ tend vers $+\infty$. Lorsque x tend vers $+\infty, h_2^{-1}(x)$ tend vers $+\infty$ donc $\lim_{x\to 0} h(x) = +\infty$.

Lorsque x tend vers $1, h_1(x) = \varphi(x)$ tend vers e. Lorsque x tend vers $e, h_2^{-1}(x)$ tend vers 1 $\lim_{x \to 1} h(x) = 1.$ donc

La fonction h est décroissante car elle la composée de la fonction décroissante h_1 par la fonction croissante h_2^{-1} .

Epreuve du 1er grouple

Correction proposée par la commission d'examen

 \mathbf{c}

La fonction h_1 est dérivable sur]0,1[car c'est la restriction de φ à V_1 .

La fonction h_2^{-1} est dérivable sur $]e, +\infty[$ car h_2 est dérivable sur V_2 (c'est la restriction de φ à V_2 ,) et sa dérivée ne s'annule pas dans $]1, +\infty[$.

Donc $h = h_2^{-1} \circ h_1$ est dérivable dans]0,1[.

Pour tout x appartenant à V_1 on a

$$\varphi[h(x)] = h_2[h(x)] \quad \operatorname{car} h(x) \in V_2$$

$$= h_2[h_2^{-1} \circ h_1(x)]$$

$$= h_1(x)$$

$$= \varphi(x) \quad \operatorname{car} x \in V_1$$

Remarquons que $\forall x \in \mathbb{R}_+^*$, $= \varphi'(x) = \frac{x-1}{r^2} e^x = \frac{x-1}{r} \varphi(x)$.

En dérivant par rapport à x la relation $\varphi(h(x)) = \varphi(x)$, pour $x \in]0, 1[$ on obtient : $\forall x \in]0, 1[, \varphi'(h(x))h'(x) = \varphi'(x)$ c'est à dire

$$\forall x \in]0, 1[, h'(x)] = \frac{\varphi'(x)}{\varphi'(h(x))}$$

$$= \frac{x-1}{x} \varphi(x) \frac{h(x)}{(h(x)-1) \varphi(h(x))}$$

$$= \frac{x-1}{x} \frac{h(x)}{h(x)-1} \operatorname{car} \varphi(x) = \varphi(h(x))$$

5. La tangente au point A a pour pente $h'(0,4) = \frac{0,4-1}{0,4} \frac{h(0,4)}{h(0,4)-1} = -3$

Une équation de cette tangente est donc y = -3(x - 0, 4) + 2

Finalement $T_A: y = -3x + 3, 2$ La tangente T_B est déjà déterminée dans la partie A puisque $\mathcal{G} = \mathcal{C}_h$.

